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ABSTRACT 
 

In Big data applications data collection has grown continuously, due to this it becomes expensive to manage, capture 

or extract and process data using existing software tools. Performing data analysis is becoming expensive with 

increasing large volume of data in data warehouse. Data privacy is one of the challenges in data mining with big 

data. To preserved the privacy of the user we need to use some method so that data privacy is preserve and at the 

same time increase the data utility. In existing centralized algorithms it assumes that the all data should be at 

centralized location for anonymization which is not possible for large scale dataset. And there was distributed 

algorithms which mainly focus on privacy preservation of large dataset rather than the scalability issue. In the 

proposed system we focus to maintain the privacy for distributed data, and also overcome the problems of M-

privacy and secrecy approach with new anonymization and slicing technique. Our main goal is to publish an 

anonymized view of integrated data, which will be prevents the vulnerable attacks. We use MR-Cube approach 

which addresses the challenges of large scale cube computation with holistic measure. Slicing contains tuple 

partition, vertical and horizontal partition, generalization, slicing and anonymization. At the slicing is successful 

then anonymized data can easily access by user effectively. 

Keywords :Privacy, security, integrity, and protection, distributed databases SMC, TTP 

 

I. INTRODUCTION 

 

There is an increasing need for sharing data that contain 

personal information from distributed databases. For 

example, in the healthcare domain, a national agenda is 

to develop the Nationwide Health Information Network 

(NHIN)1 to share information among hospitals and other 

providers, and support appropriate use of health 

information beyond direct patient care with privacy 

protection. 

 

Privacy preserving data analysis, and data publishing  

have received considerable attention in recent years as 

promising approaches for sharing data while preserving 

individual privacy. In a non-interactive model, a data 

provider (e.g., hospital) publishes a “sanitized” version 

of the data, simultaneously providing utility for data 

users (e.g., researchers), and privacy protection for the 

individuals represented in the data (e.g., patients). When 

data are gathered from multiple data providers or data 

owners,two main settings are used for 

anonymization .One approach is for each provider to 

anonymize the data independently (anonymize-and-

aggregate, Fig. 1(a)), which results in potential loss of 

integrated data utility. A more desirable approach is 

collaborative data publishing which anonymizes data 

from all providers as if they would come from one 

source (aggregate-and-anonymize,Fig. 1(b)), using 

either a trusted third-party (TTP) or Secure Multi-party 

Computation (SMC) protocols. 

 

Problem Settings. We consider the collaborative data 

publishing setting (Fig. 1(b)) with horizontally 

distributed data across multiple data providers, each 

contributing a subset of records Ti. Each record has an 

owner, whose identity should be protected. Each record 

attribute is either an identifier, which directly identifies 

the owner, or a quasiidentifier (QID), which may 

identify the owner if joined with a publicly known 

dataset, or a sensitive attribute,which should be also 

protected. As a special case, a data provider could be the 

data owner itself who is contributing its own records. A 

data recipient may have access to some background 

knowledge (BK in Fig. 1), which represents any publicly 

available information about released data, e.g., Census 

datasets. 
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Our goal is to publish an anonymized view of the 

integrated data, T∗, which will be immune to attacks. 

Attacks are run by attackers, i.e., a single or a group (a 

coalition) of external or internal entities that wants to 

breach privacy of data using background knowledge, as 

well as anonymized data. Privacy is breached if one 

learns anything about data. 

 

Existing Solutions. Collaborative data publishing can 

be considered as a multi-party computation problem, in 

which multiple providers wish to compute an 

anonymized view of their data without disclosing any 

private and sensitive information. We assume the data 

providers are semi-honest commonly used in distributed 

computation setting. A trusted third party (TTP) or 

Secure Multi-Party Computation (SMC) protocols [6] 

can be used to guarantee there is no disclosure of 

intermediate information during the anonymization. 

However, neither TTP nor SMC protects against 

inferring information using the anonymized data. 

  The problem of inferring information from anonymized 

data has been widely studied in a single data provider 

settings [3]. A data recipient that is an attacker, e.g.,P0, 

attempts to infer additional information about data 

records using the published data, T∗, and 

backgroundknowledge, BK. For example, k-anonymity 

[10], [11] protects against identity disclosure attacks by 

requiring each quasi-identifier equivalence group (QI 

group) to contain at least k records. l-Diversity requires 

each QI group to contain at least l “well-represented” 

sensitive values Differential privacy guarantees that the 

presence of a record cannot be inferred from a statistical 

data release with little assumptions on an attacker’s 

background knowledge. 

 

New Challenges. Collaborative data publishing 

introduces a new attack that has not been studied so far. 

Each data provider, such as P1 in Fig. 1, can use both, 

anonymized data T∗, and its own data T1 to infer 

additional information about other records. Compared to 

the attack by the external recipient in the second 

scenario, each provider has additional data knowledge of 

its own records,which can help with the attack. This 

issue can be further worsened when multiple data 

providers collude with each other. 

 

In the social network or recommendation setting, a user 

may attempt to infer private information about other 

users using the anonymized data or recommendations 

assisted by some background knowledge and her own 

account information.Malicious users may collude or 

even create artificial accounts as in a shilling attack  

 
Figure 1.  System Architecture 

 

Contributions. We define and address this new type of 

“insider attack” by data providers in this paper. In 

general,we define an m-adversary as a coalition of m 

colluding data providers or data owners, and attempts to 

infer data records contributed by other data providers. 

Note that  adversary models the external data recipient, 

who has only access to the external background 

knowledge. Since each provider holds a subset of the 

overall data, this inherent data knowledge has to be 

explicitly modeled, and considered when the data are 

anonymized. 

 

We address the new threat introduced by m-adversaries, 

and make several important contributions. First, we 

introduce the notion of m-privacy that explicitly models 

the inherent data knowledge of an m-adversary, and 

protects anonymized data against such adversaries with 

respect to a given privacy constraint. For example, in 

Table 1 T∗b is an anonymized table that satisfies m-

privacy (m = 1) with respect to k-anonymity and l-

diversity (k = 2, l = 2). 

 

Second, for scenarios with a TTP, to address the 

challenges of checking a combinatorial number of 

potential m-adversaries, we present heuristic algorithms 

for efficiently verifying m-privacy given a set of records. 

Our approach utilizes effective pruning strategies 

exploiting the equivalence group monotonicity property 

of privacy constraints and adaptive ordering techniques 

based on a novel notion of privacy fitness. We also 
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present a data provideraware anonymization algorithm 

with adaptive strategies of checking m-privacy, to ensure 

high utility and m-privacy of sanitized data with 

efficiency.Compared to our preliminary version [1], our 

new contributions extend above results. First, we adapt 

privacy verification and anonymization mechanisms to 

work for m-privacy w.r.t. to any privacy constraint, 

including nonmonotonic ones. We list all necessary 

privacy checks and prove that no fewer checks is enough 

to confirm m-privacy.Second, we propose SMC 

protocols for secure m-privacy verification and 

anonymization. For all protocols we prove their security, 

complexity and experimentally confirm their efficiency. 

 

II. METHODS AND MATERIAL 
 

2. m-Privacy Definition 

 

We first formally describe our problem setting. Then, we 

present our m-privacy definition with respect to a 

privacy constraint to prevent inference attacks by m-

adversary,followed by properties of this new privacy 

notion. Let T = {t1, t2, . . .} be a set of records with the 

same attributes gathered from n data providers P ={P1, 

P2, . . . , Pn}, such that Ti ⊆ T are records provided by 

Pi. Let AS be a sensitive attribute with a domain DS. 

 

If the records contain multiple sensitive attributes then, 

we treat each of them as the sole sensitive attribute, 

while remaining ones we include to the quasi-identifier 

[12]. However, for our scenarios we use an approach, 

which preserves more utility without sacrificing privacy 

[15].Our goal is to publish an anonymized table T∗ 

while preventing any m-adversary from inferring AS for 

any single record. An m-adversary is a coalition of data 

users with m data providers cooperating to breach 

privacy of anonymized records. 

 

2.1 m-Privacy 

 

To protect data from external recipients with certain 

background knowledge BK, we assume a given privacy 

requirement C is defined as a conjunction of privacy 

constraints:C1 ∧ C2 ∧ . . . ∧ Cw. If a group of 

anonymized records T∗satisfies C, we say C(T∗) = true. 

By definition C(∅) is true and ∅ is private. Any of the 

existing privacy principles can be used as a component 

constraint Ci.We now formally define a notion of m-

privacy with respect to a privacy constraint C, to protect 

the anonymized data against m-adversaries. The notion 

explicitly models the inherent data knowledge of an m-

adversary, the data records they jointly contribute, and 

requires that each QI group, excluding any of those 

records owned by an m-adversary, still satisfies C. Note 

that this observation describes monotonicity of m-

privacy with respect to the number of adversaries, and is 

independent from the privacy constraint C and records. 

In the next section we investigate monotonicity of m-

privacy with respect to records for a given value of m. 

 

2.2 Monotonicity of Privacy Constraints 

 

Monotonicity of privacy constraints is defined for a 

single equivalence group of records, i.e., a group of 

records that QI attributes share the same generalized 

values. Let A1 be a mechanism that anonymizes a group 

of records T into a single equivalence group, T∗ = 

A1(T).Generalization based monotonicity of privacy 

constraints has been already defined in the literature Its 

fulfillment is crucial for designing efficient 

generalization algorithms In this paper we will refer to it 

as generalization monotonicity. 

 

In the definition of generalization monotonicity there is 

an assumption that original records have been already 

anonymized into equivalence groups, which are used for 

further generalizations. In this paper, we introduce more 

general and record-based definition of monotonicity in 

order to facilitate the analysis, and design efficient 

algorithms for verifying m-privacy w.r.t. C. 

 

3. Verification of m-Privacy 

 

Checking whether a set of records satisfies m-privacy 

creates a potential computational challenge due to the 

combinatorial number of m-adversaries. In this section 

we first analyze the problem by modeling the adversary 

space. Then, we present heuristic algorithms with 

effective runing strategies and adaptive ordering 

techniques for efficiently checking m-privacy w.r.t. an 

EG monotonic constraint C. Implementation of 

introduced algorithms can be run by a trusted third party 

(TTP). For scenarios without such party, we introduce 

secure multi-party (SMC) protocols.Finally, in 

Appendix B.1, available online, we present 

modifications of TTP heuristics and SMC protocols to 

verify m-privacy w.r.t. non-EG monotonic privacy 

constraints. 
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3.1 Adversary Space Enumeration 

 

Given a set of nG data providers, the entire space of 

madversaries (m varying from 0 to nG−1) can be 

represented using a lattice shown in Fig. 2. Each node at 

layer m represents an m-adversary of a particular 

combination of m providers. The number of all possible 

m-adversaries is given by _nG m_. Each node has 

parents (children) representing their direct super- (sub-) 

coalitions. For simplicity the space is depicted as a 

diamond, where a horizontal line at a level m 

corresponds to all m-adversaries, the bottom node to 0-

adversary (external data recipient), and the top line to 

(nG − 1)-adversaries.In order to verify m-privacy w.r.t. a 

constraint C for a set of records, we need to check 

fulfillment of C for all records after excluding any 

possible subset of m-adversary records. When C is EG 

monotonic, we only need to check Cfor the records 

excluding all records from any m-adversary 

(Observation 2.3), i.e., adversaries on the horizontal 

line.Given an EG monotonic constraint, a direct 

algorithm can sequentially generate all possible and then 

check privacy of the corresponding remaining records. 

In the worst-case scenario, when m = nG/2, the number 

of checks is equal to the central binomial coefficient 

Thus, the direct algorithm is not efficient enough. 

 

3.2 Heuristic Algorithms for EG Monotonic 

Constraints 

 

In this section, we present heuristic algorithms for 

efficiently checking m-privacy w.r.t. an EG monotonic 

constraint.Then, we modify them to check m-privacy 

w.r.t. a non-EG monotonic constraint. 

 

The key idea of our heuristics for EG monotonic privacy 

constraints is to efficiently search through the adversary 

space with effective pruning such that not all m-

adversaries need to be checked. This is achieved by two 

different pruning strategies, an adversary ordering 

technique, and a set of search strategies that enable fast 

pruning. 

 

Pruning Strategies. The pruning is possible thanks to 

the EG monotonicity of m-privacy If a coalition is not 

able to breach privacy, then all its subcoalitions will not 

be able to do so as well, and hence do not need to be 

checked (downward pruning). On the other hand, if a 

coalition is able to breach privacy, then all its super-

coalitions will be able to do so as well, and hence do not 

need to be checked (upward pruning). In fact, if a sub-

coalition of an m-adversary is able to breach 

privacy,then the upward pruning allows the algorithm to 

terminate immediately as the m-adversary will be able to 

breach privacy (early stop). Fig. 2 illustrates the two 

pruning strategies where + represents a case when a 

coalition does not breach privacy and  otherwise. 

 

The Top-Down Algorithm. The top-down algorithm 

checks the coalitions in a top-down fashion using 

downward pruning, starting from (nG−1)-adversaries, 

and moving down until a violation by an m-adversary is 

detected or all m-adversaries are pruned or checked. 

 

The Bottom-Up Algorithm. The bottom-up algorithm 

is similar to the top-down algorithm. The main 

difference is in the sequence of coalition checks, which 

is in a bottom up fashion starting from 0-adversary, and 

moving up. The algorithm stops if a violation by any 

adversary is detected (early stop) or all m-adversaries 

are checked. 

 

The Binary Algorithm. The binary algorithm 

(Algorithm1), inspired by the binary search algorithm, 

checks coalitions between (nG − 1)-adversaries and m-

adversaries,and takes advantage of both pruning 

strategies  Thanks to EG monotonicity of the privacy 

constraint,we do not consider coalitions of less than m 

adversaries The goal of each iteration in the algorithm is 

to search for a pair of coalitions Isub and Isuper, such 

that sub-coalition of Isuper, and Isuper breaches privacy, 

while Isub does not. Then, Isub and all its sub-coalitions 

are pruned (downward pruning), Isuper and all its super-

coalitions are pruned (upward pruning) as well. 

 

Adaptive Selection of Algorithms. Each of the above 

algorithms focuses on different search strategy, and 

hence utilizes different pruning. Which algorithm to use 

is largely dependent on the characteristics of a given 

group of providers. Intuitively, the privacy fitness score  

which quantifies also the level of privacy fulfillment of 

the group, may be used to select the most suitable 

algorithm.The higher the fitness score, the more likely 

m-privacy will be satisfied, and hence the top-down 

algorithm with downward pruning will significantly 

reduce the number of adversary checks. We utilize such 

strategy in the anonymization algorithm (discussed later), 

and experimentally evaluate it. 
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4. Secure m-Privacy Verification Protocols 

 

All the above algorithms can be run by a trusted third-

party (TTP). For settings without such a party, data 

providers need to run an SMC protocol. We assume that 

all providers are semi-honest, i.e., honest but curious. In 

this section we present secure protocols to verify m-

privacy w.r.t. EG monotonic constraint C. A secure m-

privacy verification protocol for a non-EG monotonic 

constraint is an extension of the bottom-up approach. 

Due to space limit details of such protocol were moved 

to Appendix D.2, available online. 

 

Note that the TTP can recognize duplicated records, and 

treats them in the appropriate way. For SMC protocols 

all records are unique, and duplicates are not detected. 

 

Preliminaries. Our SMC protocols are based on 

Shamir’s secret sharing , encryption, and other secure 

schemas. In a secret sharing scheme, the owner of a 

secret message s prepares and distributes nG shares, 

such that each party gets a few shares (usually one). We 

use [s] to denote the vector of shares and [s]i to refer to 

an ith share sent to Pi.An algorithm reconstructing s 

requires any r shares as its input. To prevent any 

coalition of up to m providers to reveal intermediate 

results, we set r = m + 1. Note that receivers of shares do 

not have to be providers and trusted. They could be run 

as separate processes in a distributed environment, e.g., 

cloud, and still computations would stay information-

theoretically secure In our implementation and 

complexity analyzes, we have used SEPIA framework  

 

4.1 Secure EG Monotonic m-Privacy Verification 

 

Assume that a group of data records is horizontally 

distributed among nG data providers. They would like to 

securely verify, if anonymization of their records into 

one QI group, is m-private w.r.t. C. Additionally, 

assume that verification of privacy defined by C is given 

(described below), and all providers have already elected 

a leader P_. Before verifying m-privacy the leader 

securely sorts data providers. 

 

Secure Sorting and Adaptive Ordering. The main 

responsibility of the leader is to determine m-privacy 

fulfilment with as little privacy checks as possible. Our 

heuristic minimizes the number of privacy checks by 

utilizing EG monotonicity of C and adaptive ordering of 

m-adversary generation To define such order, P_ runs 

any sorting algorithm, which sorts providers by fitness 

scores of their local records, with all comparisons run 

securely. Applying the adaptive ordering heuristic 

uncovers the order of fitness scores of data providers. 

Without such ordering more privacy checks need to be 

performed. Our implementations of secure sorting 

protocol utilizes the Shamir’s secret sharing scheme 

with r shares required to reconstruct a secret. To ensure 

m-privacy we set r = m+1.Thus, for nG data providers 

the protocol requires running a sorting algorithm, which 

takes O(nG log nG) secure comparisons. Each secure 

comparison has the same complexity, i.e.,requires a few 

secure multiplications, where each multiplication takes 

O(m2) time [21]. Thus, the secure sorting time 

complexity is equal to O(m2nG log nG). Each secure 

multiplication requires passing nG(nG − 1) messages in 

total,although only (m+1)2 of them are needed to get the 

result.Thus, the communication complexity is O(n3G 

log nG). 

 

Secure m-Privacy Verification Protocol. After finding 

the order of data providers, the leader P_ starts verifying 

privacy for different coalitions of attackers, which are 

generated in specific order. A general scheme of secure 

mprivacy verification is the same for all heuristic 

algorithms Common steps are as follows. In the main 

loop P_ verifies privacy of records for m-adversaries 

until m-privacy can be decided (line 3). Note that in 

order to determine m-privacy w.r.t. EG monotonic C, it 

is enough to check privacy for all scenarios with exactly 

m attackers (Corollary 2.3). In the loop, P_ generates 

and broadcasts a coalition of potential adversaries I, so 

each party can recognize its status (attacker/non-attacker) 

for the current privacy check. Then, the leader runs the 

secure privacy verification protocol for I (line 6). If 

privacy could be breached,and I has no more than m 

data providers, then the protocol stops and returns 

negative answer (line 7). Otherwise, the information 

about privacy fulfillment is used to prune (upwards or 

downwards) a few potential m-adversaries (line 9). 

Finally, if m-privacy w.r.t. C can be decided, then P_ 

returns the results of m-privacy verification (line 10).For 

the binary algorithm, secure m-privacy verification 

protocol is also run by P_, which executes all steps of 

the Algorithm 1. The only difference is privacy 

verification, which is implemented as an SMC protocol. 

Due to lack of space details of this protocol are skipped. 
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4.2 Secure Privacy Constraint Verification 

 

To allow using any privacy constraint in our m-privacy 

verification protocol, secure privacy verification is 

implemented as a separate protocol, and results of its 

runs are disclosed. Presenting verification protocols for 

any privacy constraint is out of the scope of this paper, 

but we present secure protocols to verify k-anonymity 

and l-diversity. All implementations use Shamir’s secret 

sharing [19] as their main scheme. For a few 

subprotocols we use encryption (commutative, 

homomorphic, etc.), and other secure schemas for 

efficiency. Assume that there are nG data providers, and 

each data provider Pi provides Ti records. 

 

Secure k-Anonymity Verification. To securely verify 

k-anonymity, the leader counts all records s = |T| using 

the secure sum protocol and securely compares s with k. 

Our implementation of the secure sum protocol uses 

only Shamir’s secret sharing scheme First, all data 

providers run secure sum protocol in order to compute 

total number of records s. To avoid disclosing sits values 

is stored in distributed shares [s] (line 1). Finally,all 

providers securely compare [s] with k [21]. As the 

result,each provider gets a share of 1 if k-anonymity 

holds or a share of 0 otherwise (line 2). 

 

5. Anonymization for m-Privacy 

After defining the m-privacy verification algorithms and 

protocols, we can use it to anonymize a horizontally 

distributed dataset while preserving m-privacy w.r.t. C. 

In this section, we present a baseline algorithm, and then 

our approach that utilizes a data provider-aware 

algorithm with adaptive verification strategies to ensure 

high utility and m-privacy for anonymized data. We also 

present an SMC protocol that implements our approach 

in a distributed environment, while preserving 

security.For a privacy constraint C that is generalization 

monotonic, m-privacy w.r.t. C is also generalization 

monotonic (Theorem 2.1), and most existing 

generalization-based anonymization algorithms can be 

easily modified to guarantee m-privacy w.r.t. C. The 

adoption is straightforward, every time a set of records is 

tested for privacy fulfillment, we check m-privacy w.r.t. 

C instead. As a baseline algorithm to achieve m-privacy, 

we adapted the multidimensional Mondrian algorithm 

[18] designed for k-anonymity. The main limitation of 

such adaptation is that groups of records are formed 

oblivious of the data providers, which may result in 

over-generalization in order to satisfy m-privacy w.r.t. C. 

 

5.1 Anonymization Algorithm 

 

We introduce a simple and general algorithm based on 

the Binary Space Partitioning (BSP) (Algorithm 3). 

Similar to the Mondrian algorithm, it recursively 

chooses an attribute to split data points in the 

multidimensional domain space until the data cannot be 

split any further without breaching m-privacy w.r.t. C. 

However, the algorithm has three novel features: 1) it 

takes into account the data provider as an additional 

dimension for splitting; 2) it uses the privacy fitness 

score as a general scoring metric for selecting the split 

point; 3) it adapts its m-privacy checking strategy for 

efficient verification. The pseudo code for our provider-

aware anonymization algorithm is presented in 

Algorithm 5. 

 

Provider-Aware Partitioning. The algorithm first 

generates all possible splitting points, π, for QI attributes 

and data providers (lines 1 to 2). In addition to the 

multidimensional QI domain space, we consider the data 

provider of each record as its additional attribute A0. For 

instance,each record t contributed by data provider P1 

will have t[A0] = P1. Introducing this additional 

attribute adds also a new dimension for partitioning. 

Using A0 to split data points decreases number of 

providers in each partition, and hence increases the 

chances that more sub-partitions will be m-private and 

feasible for further splits. This leads to a more precise 

view of the data, and have a direct impact on the 

anonymized data utility. To find the potential split point 

along this dimension, we impose a total order on the 

providers, e.g., sorting the providers alphabetically or 

based on the number of records they provide, and 

partition them into two group with approximately the 

same size. 

 

5.2 Secure Anonymization Protocol 

 

Algorithm 5 can be executed in a distributed 

environment by a TTP or by all providers running an 

SMC protocol. In this section we present a secure 

protocol for semi-honest providers. As an SMC schema 

we use Shamir’s secret sharing, but, when needed, we 

employ also encryption.The key idea of the protocol is 

to use existing SMC protocols. The first step for all 
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providers is to elect the leader P_ by running a secure 

election protocol which then runs Algorithm 6.The most 

important step of the protocol is to choose an attribute 

used to split records based on fitness scores of record 

subsets. Splitting is repeated until no more valid splits 

can be found, i.e., any further split would return records 

that violate the privacy. 

 

Secure anonymization protocol runs as follows. First, 

the median of each attribute Ai is found by running the 

secure median protocol (line 4, [27]). All records with 

the Ai values less than the median and some records 

with the Ai values equal to the median establish the 

distributed set Ts,i.Remaining records define the 

distributed set Tg,i. Then, mprivacy w.r.t. C is verified 

for Ts,i by running the secure verification protocol, i.e., 

either Algorithm 2 or 10 (line 8).w.r.t. C, then this split 

becomes a candidate split. For each candidate split, 

minimum fitness score of Ts,i and Tg,i is computed 

(secure fitness score protocol is described below). 

 

Among candidate splits, the one with the maximal 

fitness score is chosen, and the protocol is run 

recursively for its subpartitions (lines 21 to 22). If no 

such attribute can be found for any group of records, the 

protocol stops.Secure m-privacy anonymization protocol 

calls three different SMC subprotocols: the secure 

median [27], [28], the secure m-privacy verification 

(Section 4), and the secure fitness score (Algorithm 7). 

The last protocol needs to be defined for each privacy 

constraint C (described below). For the sake of this 

analysis, we assume that all these protocols are perfectly 

secure, i.e., all intermediate results can be inferred from 

the protocol outputs.At each anonymization step 

following values are disclosedimedians si of all QID 

attributes, fulfillment of m-privacy w.r.t. C for records 

split according to every computed median, and, for m-

private splits, the order of privacy fitness scores of all 

verified subsets of records.Medians of all QID attributes 

need to be revealed to allow each provider defining its 

local subgroups of records. 

 

 

III. RESULTS AND DISCUSSION 

 

Experiments 

 

We run two sets of experiments for m-privacy w.r.t. 

C with the following goals: 1) to compare and 

evaluate the different m-privacy verification 

algorithms and 2) to evaluate and compare the 

proposed anonymization algorithm with the 

baseline algorithm in terms of both utility and 

efficiency. All experiments have been run for 

scenarios with a trusted third party (TTP), and 

without it (SMC protocols). Due to space 

restrictions all experiments for a TTP setting are in 

the previous version of the paper [1] and in 

Appendix C,available online. 

 

6.1 Experiment Setup 

 

We merged the training and testing sets of the Adult 

dataset2. Records with missing values have been 

removed. All remaining 45,222 records have been 

randomly distributed among n providers. As a 

sensitive attribute AS we chose Occupation with 14 

distinct values. 

 
Table 1: Experiment Settings and Default Values 

of SMC Protocols 

 

To implement SMC protocols, we have enhanced 

the SEPIA framework which utilizes Shamir’s 

secret sharing scheme Security of communication is 

guaranteed by the SSL using 128-bit AES 

encryption scheme. For the secure l-diversity 

protocol we have used commutative Pohlig-

Hellman encryption scheme with a 64-bit key  

 

6.2 Secure m-Privacy Verification 

 

The objective of the first set of experiments is to 

evaluate the efficiency of different heuristics in 

generating attacker coalitions for privacy 

verification. Note that computation times are 

presented in seconds, not milliseconds. 
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Attack Power. In this experiment, we compare m-

privacy verification heuristics against different 

attack powers, and different number of data 

providers. Fig. 4(a) shows computation time with 

varying m and nG for all heuristics. Similar to the 

TTP implementation, the secure protocols for the 

top-down and binary algorithms demonstrate the 

best performance. The difference between these two 

approaches is negligible for most values of m. The 

direct approach is not that efficient as the above 

algorithms except small and large values of m. The 

bottom-up approach is useful only for very small 

values of m. Numbers of messages that are 

generated, while running protocols (not shown), are 

between 104 and 106 for different m, and lead to 

the same conclusions. 

 

Binary Algorithm: 

 

Data: Anonymize records DATA from providers P, 

an EG monotonic C, a fitness scoring function score 

F , and the n. 

 

Result: if DATA is private secure C then True, else 

false 

 

1. sites = sort_sites(P, increasing order, scoreF ) 

2. Apply slicing 

3. while verify data-privacy(DATA, n, C) = 0 do 

4. super = next_instance size(n− 1)&& 

(size_of_tupples (Σ) ) // identification of column 

5. if privacy breached_by(Psuper, C) = 0 then 

6. prune_all_sub-instances_downwards(Psuper) 

7. continue 

8. Psub = next_sub-instance_of(Psuper,n) 

9. if privacy_is_breached_by(Psub, C) = 1 then 

10. return 0 // early stop 

11. while instance_between(Psub, Psuper) do 

12. I = next_instance between(Psub, Psuper) 

13. if privacy breached_by(P,C) = 1 then 

14. Psuper = P 

15. else 

16. Psub = P 

17. prune_all_sub-instances_downwards(Psub) 

18. prune_all_super-instances_upwards(Psuper) 

19. return 1 

Table 2 shows the final output of system after 

execution of all algorithms. Basically slicing will 

provide the better security than existing approach 

Name Address Zip 

code 

Age Disease 

Jhon Nairobi 452*** [0-

25] 

****** 

Ruby Melbourne 145*** [26-

50] 

****** 

Alex Sidney 365*** [26-

50] 

****** 

Bobby Jakarta 356*** [51-

75] 

****** 

            Table 2: 1-Slicing Result 

In first experiment we have generate high 

dimension health care data with 300000 records and 

execute the system with local database, when we 

compare the complexity its very  high. Its take 

around 8 minutes for all execution for all 

commands. 

In second experiment we execute the system with 

distributed servers on windows platform  with same 

dataset and used 4 data servers. Finally collect the 

result, below tables’ shows Below figure shows the 

server execution time for different high dimension 

databases.                       

                       

 
 

IV. CONCLUSION 

 
In real world applications managing and mining Big 

Data is Challenging task, as the data concern large in a 

volume, distributed and decentralized control and 

complex. To preserving privacy of the distributed data 

we need technique which handle this data without 
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data/information loss and the resultant anonymized data 

will available for users. 

 

Data provider first remove all explicit identifier from the 

data but simply removing explicit identifying 

information is not sufficient for protecting privacy. To 

handle and compute this large scale Data we used MR-

Cube approach to compute large scale data sets. To 

overcome the problems of M-privacy and secrecy 

approach we use new anonymization and slicing 

technique. 
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